
Proportional precision pressure regulators »SYNTRONIC«

»SYNTESI« series

Art. No. 146651 Type No. 5612G112

Exemplary illustration

The proportional regulators in the SYNTRONIC series are used to precisely control the pressure in a system, with varying values depending on the input command. The regulators can be controlled remotely via a cable connection and an M12x1 connector accepting commands in Volts or mA.

Pressure is controlled in a 'closed loop' via a precision electronic sensor that detects the downstream pressure value, a control system that matches it to the desired pressure and two miniature solenoid valves that adjust the pressure to the target value.

Advantages:

- The connection sockets can be easily replaced, as with other products in the »SYNTESI« series.
- The presence of two rolling diaphragms offers several advantages, including increased stroke, which provides greater valve opening and consequently increased flow rate, thereby reducing dynamic and inrush friction.
- Syntronic is designed in such a way as to cause the downstream pressure to be relieved when the upstream pressure is set to zero.
- It is ideally suited for use between a valve and a cylinder because air can flow in both directions, towards the cylinder with regulated pressure and back to the relieving valve.
- The version with display can show a wide range of information and diagnostics. The user interface with the display and LEDs is entirely on one side.

ATEX version on request!

Technical data

Size Min. input pressure	Syntesi 1 Pressure to be regulated +1 bar
Min. input pressure	Pressure to be regulated +1 bar
Max. input pressure	11 bar
Temperature range	0 to 50 °C
Control range	0,2 - 10 bar
Input	G 1/4
Output	G 1/4
Front and back port thread	G 1/8
Flow rate measurement 1	at $P_1 = 10$ bar, $P_2 = 6.3$ bar and pressure drop $\Delta_p = 0.5$ bar
Flow rate 1	1800 NI/min
Flow rate measurement 2	at $P_1 = 10$ bar, $P_2 = 6.3$ bar and pressure drop $\Delta_p = 1$ bar
Flow rate 2	2200 NI/min
Medium	filtered, unlubricated compressed air, max. particle size 10µm, free of condensate
Housing	Technopolymer
Sealant	NBR
Diaphragms	NBR 60 Shore (hardness) with polyester fabric insert
Piloting	4 20 mA
Power input	max. 220 mA at 12 VDC
Protection IP	IP65
Operating voltage min.	10.8 V
Operating voltage max.	31.2 V
Hysteresis	$<\pm0.4$ % (from final value)
Repeatability	< ±0.2 % (from final value)
Sensitivity/dead-band	0.1 bar
Display - accuracy	$< \pm 0.1$ % (from final value)
Display - unit of measurement	bar
Display - minimum resolution	0.01 bar
Analog output accuracy	$< \pm 0.1$ % (from final value)
Temperature characteristics	max. 2 mbar/°C
A	42.0 mm
A1	- mm
В	147.5 mm
D	51.5 mm

Commercial data

Customs tariff number	84811099
Country of origin	IT
eCl@ss 5.1.4	27292301
eCl@ss 9.0	27292301
UNSPSC_Code_v190501	40141603
UNSPSC_CodeDesc_v190501	Pneumatic valves

C6

PROPORTIONAL PRECISION PRESSURE REGULATOR SYNTRONIC **SERIES**

The proportional regulators in the SYNTRONIC series are used to precisely control the pressure in a system, with varying values depending on the input command. The regulators can be controlled remotely via a cable connection and an M12x1 connector accepting commands in Volts or mA. The main casing is made of techno-polymer, the display (when present) is the 3-digit type and the pneumatic connections are obtained with inset and easily replaceable metal bushings, as with other products in the Syntesi series.

The presence of two rolling diaphragms offers several advantages, including increased stroke, which provides greater valve opening and consequently increased flow rate, thereby reducing dynamic and inrush

Syntronic is designed in such a way as to cause the downstream pressure to be relieved when the upstream pressure is set to zero. This makes it possible, for example, to arrange the regulator between a valve and a cylinder because air can flow in both directions, towards the cylinder with regulated pressure and back to the relieving valve.

The pressure value and a range of information and diagnostics are

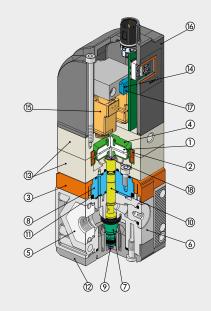
The pressure value and a range of information and diagnostics are displayed at all times on the 7 segments display.

The user interface with the display and LEDs is entirely on one side.

Pressure is controlled in a 'closed loop' via a precision electronic sensor that detects the downstream pressure value, a control system that matches it to the desired pressure and two miniature solenoid valves that adjust the pressure to the target value.

ECHNICAL DATA						
		- /		- /		
hreaded port		1/8″	1/4"	3/8″		
luid			Filtered, unlubricated air.			
		The air must	be filtered at least 10 µm and without o	ondensation.		
NIN inlet pressure	bar		Regulation pressure + 1 bar			
AX inlet pressure	bar		11			
emperature range	.℃		0 ÷ 50			
ressure regulation range	bar		0.2 ÷ 10			
low rate at 6.3 bar ΔP 0.5 inlet pressure 10 bar	NI/min	1100	1800	2200		
	scfm	39	64	78		
low rate at 6.3 bar ΔP 1 inlet pressure 10 bar	NI/min	1500	2200	2800		
	scfm	53	78	99		
Veight	g	378	373	364		
lass of protection			IP65			
ull outlow with zero inlet pressure			Included			
upply voltage range	VDC		12 -10% 24 +30%			
Minimum operating voltage	VDC	10.8				
Maximum operating voltage	VDC	31.2				
Maximum admissible voltage	VDC	32*				
Current absorption			max 220 mA a 12VDC			
ysteresis			< ± 0.4% (Full scale)			
epeatability			< ± 0.2% (Full scale)			
ensitivity/Dead-band	bar		0.1			
Output pressure (display version)	Accuracy		< ± 0.1% (Full scale)			
. , , , ,	Unit of measurement		bar			
	Minimum resolution		0.01 bar			
nalog output accuracy			< ± 0.1% (Full scale)			
emperature characteristics			max 2 mbar/°C			
stallation position			In any position			
Vall fixing screws			No. 2 M4 screws			
lotes		The features shown refer to	the static condition only. With air consu	umption on the output side,		
			the pressure may vary.			

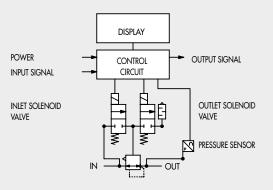
The proficiency testing is the responsibility of the user.


27.06.2024 The specified data do not represent legally guaranteed properties.

RIEGLER & Co. KG

COMPONENTS

- Anodized aluminum diaphragm washer
 Technopolymer flange
 NBR rolling diaphragm
 IN/OUT bushing made of OT58 nickel-plated brass
 Technopolymer regulator body
 OT58 brass valve, with NBR vulcanized gasket
 Passivated aluminum upper cap
- 1 Anodized aluminium plate
 2 Anodized aluminium diaphragm washer
 3 Technopolymer flange
 4 NBR rolling diaphragm
 5 IN/OUT bushing made of OT58 nickel-plate
 6 Technopolymer regulator body
 7 OT58 brass valve, with NBR vulcanized g
 8 Passivated aluminium upper cap
 9 Stainless steel valve spring
 10 OT58 brass rod
 10 O-rings in NBR
 10 Technopolymer cap
 13 Painted aluminum bodies
 14 Pressure sensor
 15 10 mm solenoid valves PLT-10 series
 16 Technopolymer cover
 17 Electronic board
 18 Exhaust gasket in NBR

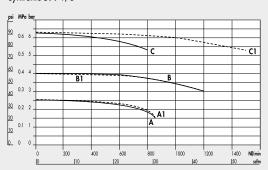

WIRING DIAGRAM

Analogue version 0-10 V

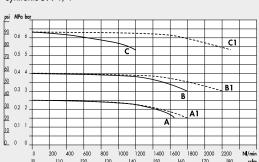
	Pin	Function description	Lead colour
	1	+12÷24 VDC power supply	Brown
ĺ	2	IN + analogue input 0-10V	White
	3	OVDC (GND) power supply	Blue
	4	IN - analogue input 0-10V	Black
	5	Analogue output 0-10V	Grav

FUNCTION DIAGRAM

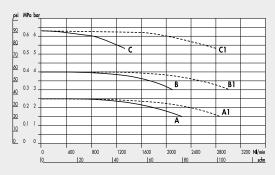
Analogue version 4-20 mA


Pin	Function description	Lead colour
1	+12÷24 VDC power supply	Brown
2	IN + analogue input 4-20 mA	White
3	OVDC (GND) power supply	Blue
4	IN - analogue input 4-20 mA	Black
5	Analogue output 4-20 mA	Gray

RIEGLER

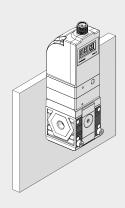


FLOW CHARTS

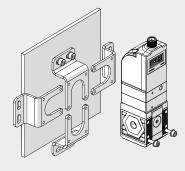

Syntronic SY1 1/8"

Syntronic SY1 1/4"

Syntronic SY1 3/8"

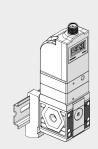


C = Pln 7 bar - POut 4 bar C = Pln 7 bar - POut 6.3 bar

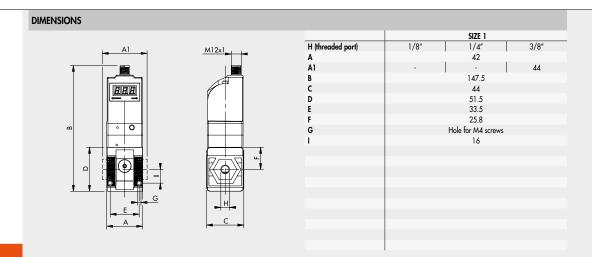

 $C1 = P \ln 10 \text{ bar - } P \text{ Out } 6.3 \text{ bar}$

MOUNTING OPTIONS

On the wall, using two screws



Using a bracket



The bracket can be secured in any position

On a DIN EN50022 bar with the apposite adaptator

C6.21

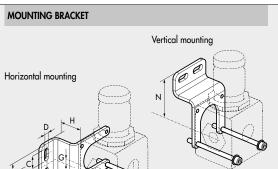
KEY	то	COL	DES

	56	1	1	G	00	1
	SYNTESI	SIZE	THREADED INPUT CONNECTION	ELEMENT	ТҮРЕ	THREADED OUTPUT CONNECTION
56	Syntesi	1 Size 1	0 Without bushing 1 1/8" port 2 1/4" port 3 3/8" port	G Syntronic	00 Remote control 0-10V 01 Remote control 4-20 mA 10 With display 0-10V 111 With display 4-20 mA	0 Without bushing 1 1/8" port 2 1/4" port 3 3/8" port

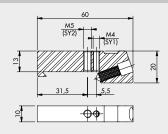
PURCHASE ORDER CODES HAVING A MORE FREQUENT USE

N.B. Besides the below mentioned codes, you can order elements composed at your will according to the key to codes.					
Code	Description	Code	Description		
5610G000	SYNTRONIC SY1 remote control 0-10V without bushings	5612G002	SYNTRONIC SY1 1/4 remote control 0-10V		
5610G010	SYNTRONIC SY1 remote control 4-20 mA without bushings	5612G012	SYNTRONIC SY1 1/4 remote control 4-20 mA		
5610G100	SYNTRONIC SY1 with display 0-10V without bushings	5612G102	SYNTRONIC SY1 1/4 with display 0-10V		
5610G110	SYNTRONIC SY1 with display 4-20 mA without bushings	5612G112	SYNTRONIC SY1 1/4 with display 4-20 mA		
5611G001	SYNTRONIC SY1 1/8 remote control 0-10V	5613G003	SYNTRONIC SY1 3/8 remote control 0-10V		
5611G011	SYNTRONIC SY1 1/8 remote control 4-20 mA	5613G013	SYNTRONIC SY1 3/8 remote control 4-20 mA		
5611G101	SYNTRONIC SY1 1/8 with display 0-10V	5613G103	SYNTRONIC SY1 3/8 with display 0-10V		
5611G111	SYNTRONIC SY1 1/8 with display 4-20 mA	5613G113	SYNTRONIC SY1 3/8 with display 4-20 mA		
	· ·		· ·		

NOTES


C6 22

RIEGLER


ACCESSORIES

Description 9200716X Mounting bracket SY1 Note: Supplie complete with screws and washers. Max torque 0.8 Nm for SY1

									L		
9200716X	41.5	20	12.7	5.5	7	3	0.8	25	43.8	46.5	47

CONNECTION BRACKETS ON THE BAR (DIN EN50022)

Code	Description
9200718X	Connection brackets on DIN bar, SY1 - SY2

Note: 2 pieces per pack complete with screws and washers. Max torque 0.8 Nm for SY1

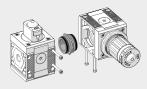
WALL-FIXING SCREW

Code	Description
9210030	M4 x 55 fixing screw SY1
Max torque 0.8 1	Nm for SY1

THREADED PORT

Code	Description
9210001	Kit IN OUT 1/8 SY
9210002	Kit IN OUT 1/4 SY
9210003	Kit IN OUT 3/8 SY

Max torque 0.4 Nm for SY1


CONNECTING NIPPLE KIT

Code	Description
9210000	Connecting nipple kit SY1

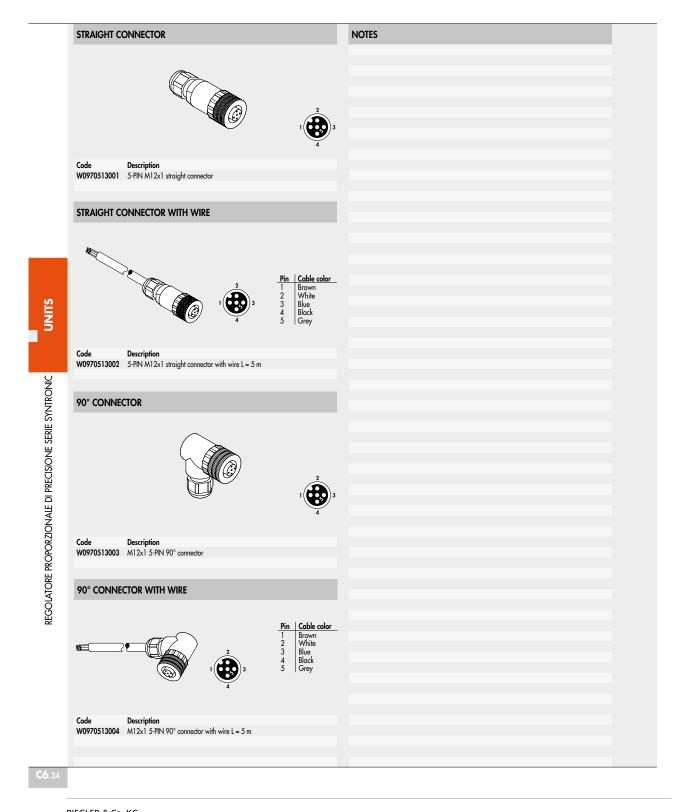
Max torque 0.4 Nm for SY1

90° CONNECTING ELEMENT KIT

Code	Description
9210009	90° SY1 connection element kit

Max torque 0.4 Nm for SY1

SY1 - SY2 SIZE ADAPTER



Code	Description
9210006	SY1 - SY2 size adapter

Max torque 0.4 Nm for SY1

Proportional precision pressure regulator syntronic series

GENERAL TECHNICAL DATA SUNTESI.

Syntesie is an important milestone achieved by Metal Work, the result of thirty years' experience producing air-treatment units. It has been studied in minute detail to obtain the best possible performance in a reduced space and with limited weight. The capacity is much higher than that of other units of the same size.

This modular unit features a very simple yet effective system that requires no brackets, stay bolts or yoke for assembling the elements. The basic version of Syntesi® incorporates numerous functions that are not provided or are only optional with traditional units. Examples are padlockable knobs, additional pneumatic ports on the front and back, flow options from left to right or vice versa, regulators with compensation system - which are accurate even when the upstream pressure changes, with rapid downstream pressure relief - full indelible marking, automatic condensate drain even in size 1, and 360° visual inspection of oil and condensate levels. The basic materials, technopolymer and nickel-plated brass have excellent corrosion resistance. An anti-corrosion version is available with stainless steel components (screws, plates) or Geomet®-reated ones (regulator springs).

SIZE 2

TECHNICAL DATA

Threaded port Max. input pressure bor MPa psi Flow rate Min/max temperature at 10 bar; 1 MPa; 145 psi Psi Houning position Direction of flow Additional air take-off, for pressure gauges or fittings Wall fixing screws Certification for potentially explosive atmosphere accoording to Atex 2014/34/EU rule 1/8" 1/4" 3/8" 3/8" 1/2" 3/4" 1" See catalogue of the various elements from -10 to +50 The knobs of the regulators, filter regulators and standard sectioning valves can all be padlocked Compressed air or other inert gases See catalogue of the various elements Flow options right to left or vice versa 1/8", front and rear, on all modules No. 2 M4 screws 1/8"												
MPa psi	Threaded port		1/8″	1/4"	3/8"	3/8"		1/2"		3/4"		1"
Pow rate See catalogue of the various elements	Max. input pressure								13			
Flow rate See catalogue of the various elements		MPa										
Min/max temperature at 10 bar; 1 MPa; 145 psi Padlockable knob Padlockable knob Fluid Compressed air or other inert gases Mounting position Direction of flow Additional air take-off, for pressure gauges or fittings Wall fixing screws Certification for potentially explosive atmosphere Cfrom -10 to +50 The knobs of the regulators and standard sectioning valves can all be padlocked Compressed air or other inert gases See catalogue of the various elements Flow options right to left or vice versa 1/8", front and rear, on all modules No. 2 M4 screws No. 2 M4 screws No. 2 M5 screws If 3G Ex h IIC T5 Gc -10°C < Ta < 50°C		psi		217		١			188			
Padlockable knob The knobs of the regulators, filter regulators and standard sectioning valves can all be padlocked Fluid Compressed air or other inert gases Mounting position Direction of flow Direction of flow Additional air take-off, for pressure gauges or fittings Wall fixing screws Certification for potentially explosive atmosphere The knobs of the regulators and standard sectioning valves can all be padlocked Compressed air or other inert gases See catalogue of the various elements Flow options right to left or vice versa 1/4", front and rear, on all modules No. 2 M4 screws No. 2 M4 screws No. 2 M5 screws						ogue of the vari	ious ele					
Fluid Compressed air or other inert gases Mounting position See catalogue of the various elements Direction of flow Additional air take-off, for pressure gauges or fittings Additional air take-off, for pressure gauges or fittings No. 2 M4 screws Certification for potentially explosive atmosphere Compressed air or other inert gases See catalogue of the various elements Flow options right to left or vice versa 1/8", front and rear, on all modules No. 2 M4 screws No. 2 M4 screws No. 2 M5 screws		℃				l						
Mounting position See catalogue of the various elements Direction of flow Additional air take-off, for pressure gauges or fittings No. 2 M4 screws Additional or take-off, for pressure gauges or fittings No. 2 M4 screws All fixing screws No. 2 M4 screws If 3G Ex h IIC T5 Gc - 10°C < Ta < 50°C			1	he knobs of the re					es can al	ll be padle	ocked	
Direction of flow Additional air take-off, for pressure gauges or fittings Wall fixing screws No. 2 M4 screws No. 2 M4 screws No. 2 M5 screws Certification for potentially explosive atmosphere												
Additional air take-off, for pressure gauges or fittings 1/8", front and rear, on all modules No. 2 M4 screws No. 2 M4 screws No. 2 M5 screws No. 2 M5 screws II 3G Ex h IIC T5 Gc -10°C < Ta < 50°C												
Wall fixing screws No. 2 M4 screws No. 2 M5 screws Certification for potentially explosive atmosphere No. 2 M4 screws No. 2 M5 screws Il 3G Ex h IIC T5 Gc -10°C < Ta < 50°C												
Certification for potentially explosive atmosphere II 3G Ex h IC T5 Gc -10°C < Ta < 50°C					, , , , , , , , , , , , , , , , , , , ,							
according to Atex 2014/34/EU rule			II 3G Ex h IIC T5 Gc -10°C < Ta < 50°C									
	according to Atex 2014/34/EU rule		™ II 3D Ex h IIIC 1100 °C Dc									

SIZE 1

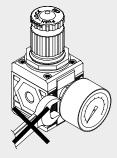
ANTI-CORROSION VERSION

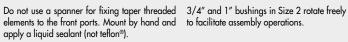
Differences compared to the standard version:

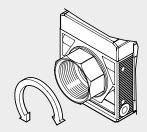
- stainless steel screws
- stainless steel plate for R, FR, V3V knobs
- Geomet®-treated regulator spring and filter-regulator

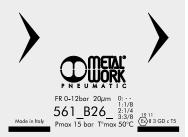
C1.4

GENERAL TECHNICAL DATA Syntesi®

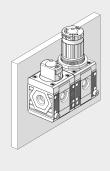




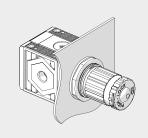

FIXING TO FRONT PORTS


ROTARY BUSHINGS

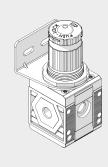
LASER MARKING

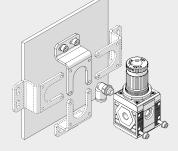


The following is marked indelibly on the body:
- Metal Work trademark

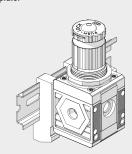

- Code
- Maximum pressure and temperature
 Degree of filtration or pressure range, where relevant
- Week and year of manufacture
- Atex categoryMade in Italy

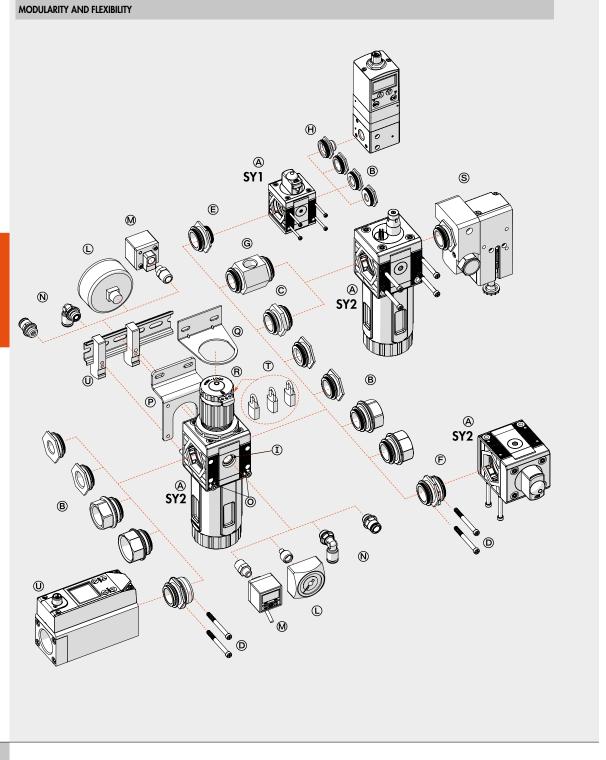
MOUNTING OPTIONS


On the wall, using two screws


On a panel

Using knob bracket




Using a bracket

The bracket can be secured in any position, and the fittings can be mounted on the pressure gauge air intake at the back of the unit.

On a DIN EN50022 bar with the apposite adaptator

C1 A

The various elements of Syntesia @ can be connected to the air feed and delivery circuit using pneumatic nickel brass or passivated aluminium ports ® and can be fixed together using nipples ©.

The nipples and ports are easy to remove by unscrewing the two front screws (D). This solution has numerous advantages:

- Reduced overall dimensions.
- Free composition of multiple elements, without the need for brackets, stay bolts or yoke.
- The threads for the fittings are metallic, allowing high tightening torques, also for tapered threads.
- Maximum flexibility: a unit can be transformed at any time by adding an element or replacing a port with another one, e.g. 1/4" instead of 1/8".

- The air intake port can be the same or different from the outlet port, as desired. Standard Syntesi⊕ ports are: 1/8", 1/4", 3/8" for size 1; 3/8", 1/2", 3/4", 1" for size 2.

It may be necessary to use a vice to insert the bushes into size 2.

The nipples have different functions:

- Nipple © joins two elements of the same size together.
- Size adaptor © can be used to connect an element in the Syntesi® 2 series with one in the Syntesi® 1 series.
- The 90° adaptor (E) can be used to connect two 90° angled elements. For example, it can help directing the regulator knob or the control knob of a sectioning valve towards the user.
- The two-way air intake @ is a simple and cost-effective system which, besides connecting two elements together, has 2 opposing threaded air intakes.

- The adaptor for Regtronic ® can be used to fix the Regtronic 1/4" proportional valve to a Syntesi® size 1 element.

Additional ports ©. On the front and back of ALL Syntesi® elements there is a port (1/8" for size 1, 1/4" for size 2) that can be used for pressure gauges ©, pressure switches ® or, given the high flow rate, as additional air take-off ®. These ports are downstream of the element, so, for example, a regulator port can supply air at a set pressure or a filter port can supply filtered air (not valid for activated carbon filter and depurator).

Wall fixing. Only two through screws © are needed. No bulky brackets or additional flanges are required. The bracket ® can be used to separate

the unit from the fixing wall, e.g. to mount a fitting to the rear port.

Fixing on a DIN EN50022 bar. Can be done using the bracket kit ①.

Regulator fixing bracket ②. Regulators and filter-regulators can also be fixed using a steel bracket ③ that embraces the bell.

Padlockable knob ®. The knobs of regulators, filter-regulator and sectioning valves can all be padlocked. The steel plate is included in the supply. You can insert up to two 3 mm diameter padlocks ® on size 1 and three padlocks on size 2. As an alternative, the sectioning valve can have a steel plate suitable for a single 6 mm diameter padlock.

Safety valve (S). The unit can incorporate a series 70 SAFE AIR® safety valve.

Flowmeter series FLUX 1-2 (1). The unit can incorporate a series FLUX 1 or FLUX 2 flow meter.

UNITS

Syntesi® KEY TO CODES

SUNTESI: KEY TO CODES

56	1	1	F	10	1
SYNTESI	SIZE	THREADED INPUT CONNECTION	ELEMENT	ТҮРЕ	THREADED OUTPUT CONNECTION
56 Syntesi SX Syntesi anti-corrosion	1 Size 1 2 Size 2	O Without bushing 1 1/8" port 2 1/4" port 3 3/8" port O Without bushing 3 3/8" port 4 1/2" port 5 3/4" port 6 1" port	F Filter D Depurator C Active carbon filter R Pressure regulator B Filter-regulator L Lubricator ▼ V Shut off valve A Progressive starter S Pressure switches P Air take-off	Varies from element to element	O Without bushing 1 1/8" port 2 1/4" port 3 3/8" port O Without bushing 3 3/8" port 4 1/2" port 5 3/4" port 6 1" port

- The anti-corrosion version of this element is only available with manual actuation.
 Not available in the anti-corrosion version.

KEY TO CODES U	JNIT COMP	OSED OF TWO	OR THREE ELEMI	ENTS					
56	1	1	V	10	В	24	L	10	1
SYNTESI	SIZE	THREADED INPUT CONNECTION	ELEMENT 1	TYPE	ELEMENT 2	TYPE	ELEMENT 3	TYPE	THREADED OUTPUT CONNECTION
56 Syntesi 5X Syntesi anti-corrosion	1 Size 1 2 Size 2	1 1/8" port 2 1/4" port 3 3/8" port 3 3/8" port 4 1/2" port 5 3/4" port 6 1" port	F Filter D Depurator C Active carbon filter R Pressure regulator B Filter- regulator L Lubricator ● V Shut off valve ▲ A Progressive starter ▲ S Pressure switches P Air Take-off	Varies from element to element	F Filter D Depurator C Active carbon filter R Pressure regulator B Filter- regulator L lubricator ● V Shut off valve A Progressive starter S Pressure switches P Air Take-off	Varies from element to element	F Filter D Depurator C Active carbon filter R Pressure regulator B Filter- regulator L lubricator ● V Shut off valve A Progressive starter S Pressure switches P Air Take-of	Varies from element to element	1 1/8" port 2 1/4" port 3 3/8" port 3 3/8" port 4 1/2" port 5 3/4" port 6 1" port

- The anti-corrosion version of this element is only available with manual actuation.
- ▲ Not available in the anti-corrosion version.

Accessories

	Art. No.	Type No.	
Threaded port bushing, size 1, G 1/8	144688	9210001	
Threaded port bushing, size 1, G 3/8	144690	9210003	
Connecting nipple kit, size 1	144695	9210000	
Mounting bracket, size 1, standard and anti-corr.	145658	9200716X	
Connecting element 90°,, size 1	145502	9210009	
Size adapter, size 1 - size 2, incl. 4 screws	145504	9210006	
Fastening screw, size 1	145507	9210030	
Adapter for DIN rail, size 1 and size 2	145660	9200718X	
Electric connection cable, straight wall outlet, 5 m cable	101132	533.901	
Electric connection cable, 90° elbow wall outlet, 5 m cable	101133	533.902	

Spareparts

	Art. No.	Type No.	
Locking screw, Hexagonal socket 3 mm, G 1/8, nickel-plated brass	111409	233.02-N	
Threaded port bushing, size 1, G 1/4,	144689	9210002	