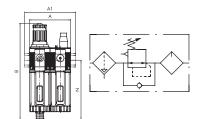


Service unit


Filter regulator + lubricator »SYNTESI« series

PLUS

Art. No. 144738

Type No. 5623B12L103

Exemplary illustration

Two-part service units consisting of filter regulator and lubricator of the »SYNTESI« series. For all information on the relevant properties, please refer to the data sheets of the individual components.

Pressure gauge not included in delivery!

Technical data

Series	Syntesi
Size	2
Max. input pressure	13 bar
Temperature range	-10 to 50 °C
Control range	0 - 4 bar
Input	G 3/8
Output	G 3/8
Front and back port thread	G 1/4
Flow rate measurement 1	at $P_1 = 10$ bar, $P_2 = 6.3$ bar and pressure drop $\Delta_p = 0.5$ bar
Flow rate 1	1200 NI/min
Flow rate measurement 2	at $P_1 = 10$ bar, $P_2 = 6.3$ bar and pressure drop $\Delta_p = 1$ bar
Flow rate 2	4000 NI/min
Filter rating	5 μm
Condensate drain	RMSA semi-automatic
Output air purity class according 8573-1	to ISO 3.7
Medium	Compressed air or other neutral gases
Housing	Technopolymer
Sealant	NBR
Diaphragms	NBR 60 Shore (hardness) with polyester fabric insert
Bowl	Technopolymer
Sight dome	Brass
Spring bonnet	Technopolymer
A	121.0 mm
A1	- mm
В	246.0 mm
N	139.8 mm

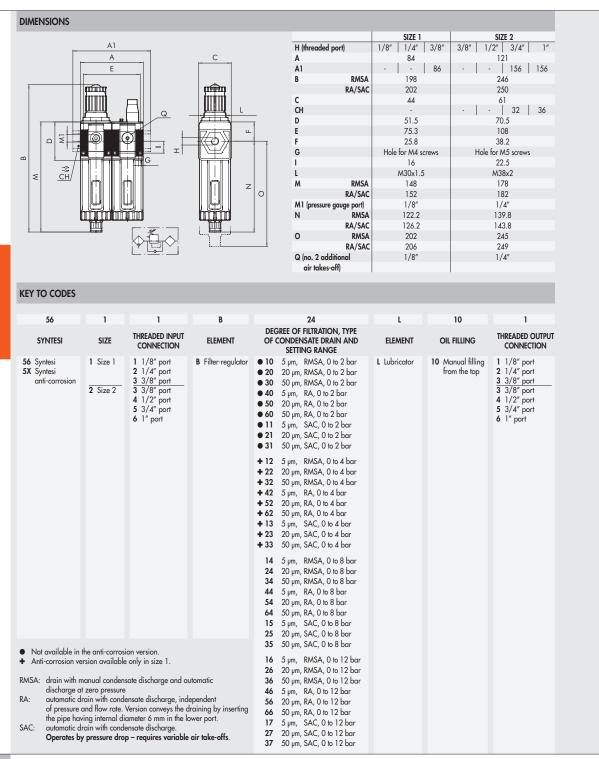
Commercial data

Customs tariff number	84811005
Country of origin	IT
eCl@ss 5.1.4	27292890
eCl@ss 9.0	27292890
UNSPSC_Code_v190501	27131604
UNSPSC_CodeDesc_v190501	Pneumatic lubricators

C1

FR + LUB SUNTESI.

For full details and list of components refer to the sections about filter-regulator and the lubricator.



TECHNICAL DATA			FR + LU	B SY1	1		FR + LUI	B SY2		
Threaded port		1/8″	1/4		3/8"	3/8"	1/2"	3/4"		1"
Threaded port Degree of filtration Max. inlet pressure MPa psi Flow rate at 6.3 bar (0.63 MPa; 91 psi) Δ P 0.5 bar (0.05 MPa; 7 psi) NI/min (P In=10 bar) Flow rate at 6.3 bar (0.63 MPa; 91 psi) Δ P 1 bar (0.1 MPa; 14 psi) (P In=10 bar) Relief valve flow rate at 6.3 bar (0.63 MPa; 91 psi) NI/min scfm Relief valve flow rate at 6.3 bar (0.63 MPa; 91 psi) NI/min scfm Min/max temperature at 10 bar; 1 MPa; 145 psi °C Padlockable knob Upstream pressure compensation Weight Fluid Mounting position Additional air take-off flow rate at 6.3 bar (0.63 MPa; 91 psi) Δ P 1 bar (0.1 MPa; 14 psi) Scfm Filter bowl capacity (condensate) Guantity of filled oil Condensate drain						ISO8573-1: 3.7.		الان		
				20	(white) - output	ut air purity class	s ISO8573-1: 4.7	7		
							ISO8573-1: 5.7.			
Max. inlet pressure	bar		15			, , , , , ,	13			
			1.5				1.3			
			217				188			
Flow rate at 6.3 bar (0.63 MPa; 91 psi) ΔP 0.5 bar (0.05 MPa; 7 psi)			350				120			
			12				42.5			
			140				400			
			50				141.			
			70				100			
(0.00 mil d, 71 pai)			2.5	-			3.5			
Min/max temperature at 10 har: 1 MPa: 145 sci			2.3 From -10)		3.3 From -10			
			rrom - I	JC+01 U	J	Included	rrom -IL	V IO +30		
							manel I			
		41.4		, ,		ncluded, via bala		10.42	75	221
•	9	414	409	17	400	1074	1047	1043	1 1	1031
					Comp	oressed air or oth				
			Verti				Vertic			
			1/8", front				1/4", front			
			500 (FR) - 4				1400 (FR) - 8			
			18 (FR) - 1		3)		49.5 (FR) -	28 (LUB)		
	cm ³		30	0			70	0		
Quantity of filled oil	cm ³		60	0			130	10		
		RM			nual condensate	e discharge and	d automatic discha		pressure	1
		R	A: automatic	drain	with condensate	'e discharae. inc	dependent of pres	ssure and flow	w rate	
		Version	conveys the	e drainin	ing by inserting	the pipe having	g internal diamete	er 6 mm in the	ne lower p	
	5	SAC: automo					pressure drop - r			take-offs.
					num input press	sure for the RA	version must not			
Recommended oils					IS	SO and UNI FD2	22			
						Spinesso; Mobil				
Wall fixing screws			No. 2 M4				No. 2 M5	screws		
							2.27%			

C1 45

FR + LUB Syntesi®

CI

C1.46

FR + LUB Syntesi®

C1

Description Code Description FR + LUB Syrtesia SY2 NOTE	FR - LUB Syntesis SY1				
Description Code Description FR LUB Sy11 Sy12 Sy2 Sy11 Sy11 Sy2 Sy11 Sy2 Sy2	Code Description FR + LUB Syntesis SY1 FR + LUB Syntesis SY2 56118541101 FR+LUB SY1 1/8 20 08 RMSA 56238541103 FR+LUB SY2 3/8 20 08 RMSA 56128541102 FR+LUB SY1 1/4 20 08 RMSA 56128541102 FR+LUB SY1 1/4 20 08 RMSA 56128541102 FR+LUB SY1 1/4 20 08 RMSA 56128541103 FR+LUB SY1 1/4 20 08 RMSA 56128541104 FR+LUB SY1 1/4 20 08 RMSA 56128541105 FR+LUB SY1 1/2 20 08 RMSA 56128541105 FR+LUB SY2 3/4 20 08 RMSA 56128541105 FR+LUB SY1 3/8 20 08 RMSA 56128541106 FR+LUB SY2 1 20 08 RMSA	PURCHASE ORDER CODES HAVING A MORE FR	EQUENT USE		
NITS		Code Description FR + LUB Syntesie SY1 5611B24L101 FR+LUB SY1 1/8 20 08 RMSA 5611B54L101 FR+LUB SY1 1/8 20 08 RA 5612B24L102 FR+LUB SY1 1/4 20 08 RMSA 5612B54L102 FR+LUB SY1 1/4 20 08 RA 5613B24L103 FR+LUB SY1 3/8 20 08 RMSA	Code Description FR + LIUB Syntesis SY2 5623B24L103 FR+LUB SY2 3/8 20 08 RMSA 5623B54L103 FR+LUB SY2 3/8 20 08 RA 5624B24L104 FR+LUB SY2 1/2 20 08 RMSA 5624B54L104 FR+LUB SY2 1/2 20 08 RA 5625B24L105 FR+LUB SY2 3/4 20 08 RMSA 5625B54L105 FR+LUB SY2 3/4 20 08 RA 5626B24L106 FR+LUB SY2 3/4 20 08 RA 5626B24L106 FR+LUB SY2 1/2 00 8 RMSA	Anti-corrosion version 5X Example	
		NOTES			
					UNITS
FR + LUB Symbosis					
					FR + LUB Syntesie

C1.47

CI

GENERAL TECHNICAL DATA SUNTESI.

Syntesie is an important milestone achieved by Metal Work, the result of thirty years' experience producing air-treatment units. It has been studied in minute detail to obtain the best possible performance in a reduced space and with limited weight. The capacity is much higher than that of other units of the same size.

This modular unit features a very simple yet effective system that requires no brackets, stay bolts or yoke for assembling the elements. The basic version of Syntesi® incorporates numerous functions that are not provided or are only optional with traditional units. Examples are padlockable knobs, additional pneumatic ports on the front and back, flow options from left to right or vice versa, regulators with compensation system - which are accurate even when the upstream pressure changes, with rapid downstream pressure relief - full indelible marking, automatic condensate drain even in size 1, and 360° visual inspection of oil and condensate levels. The basic materials, technopolymer and nickel-plated brass have excellent corrosion resistance. An anti-corrosion version is available with stainless steel components (screws, plates) or Geomet®-reated ones (regulator springs).

Ŀ	ī)
ŀ		
Ę	ij	į
۴	9	₹
d		J

GENERAL TECHNICAL DATA Syntesi®

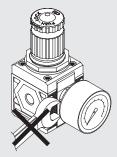
TECHNICAL DATA			SIZE	1					SIZE 2	2		
Threaded port		1/8″	1/4"		3/8"	3/8"		1/2"	Т	3/4"		1″
Max. input pressure	bar		15						13			
	MPa		1.5						1.3			
	psi		217						188			
Flow rate					See catal	ogue of the vari	ous ele					
Min/max temperature at 10 bar; 1 MPa; 145 psi	°C		from -10 to			l			n -10 to			
Padlockable knob		T	he knobs of t	he regulo		ators and stando			ves can	all be po	idlocked	
Fluid						ssed air or other						
Mounting position						ogue of the vari						
Direction of flow						ons right to left						
Additional air take-off, for pressure gauges or fittings		1/8", tr	ont and rear,		odules		1/4	4", front ar			odules	
Wall fixing screws			No. 2 M4 s	crews			_		2 M5 s	crews		
Certification for potentially explosive atmosphere				₹	II 3G Ex h	iIC T5 Gc -10°C IIC T100 °C Dc	< Ta <	< 50°C				
according to Atex 2014/34/EU rule				6	△/ 3D Ex h	IIC 1100 °C Dc						

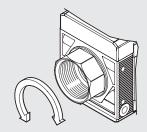
ANTI-CORROSION VERSION

Differences compared to the standard version:

- stainless steel screws
- stainless steel plate for R, FR, V3V knobs
- Geomet®-treated regulator spring and filter-regulator

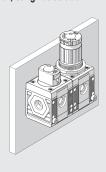
C1.4


GENERAL TECHNICAL DATA Syntesi®

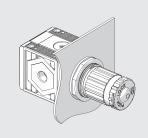


ROTARY BUSHINGS

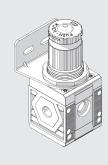
LASER MARKING

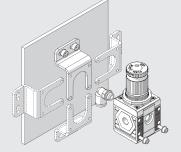


The following is marked indelibly on the body:
- Metal Work trademark

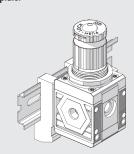

- Code
- Maximum pressure and temperature Degree of filtration or pressure range, where relevant
- Week and year of manufacture
- Atex categoryMade in Italy

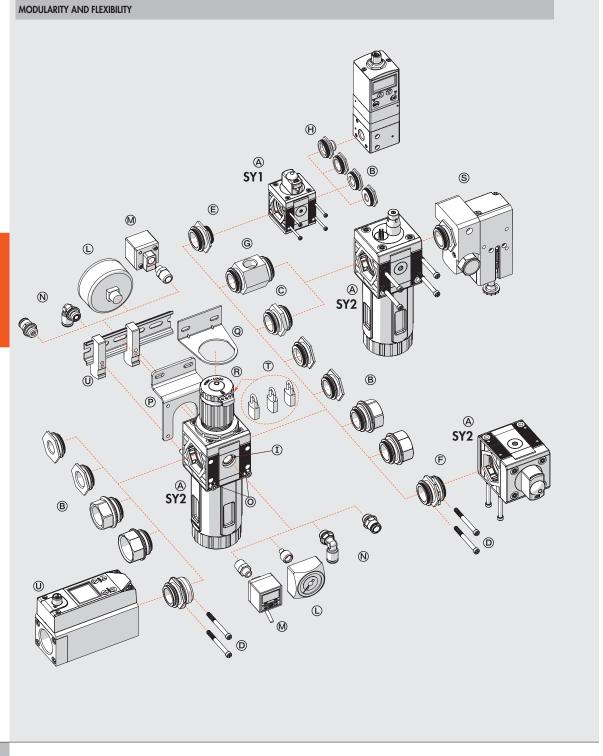
MOUNTING OPTIONS


On the wall, using two screws


On a panel

Using knob bracket




Using a bracket

The bracket can be secured in any position, and the fittings can be mounted on the pressure gauge air intake at the back of the unit.

On a DIN EN50022 bar with the apposite adaptator

C1 A

The various elements of Syntesie (a) can be connected to the air feed and delivery circuit using pneumatic nickel brass or passivated aluminium ports (B) and can be fixed together using nipples ©.

The nipples and ports are easy to remove by unscrewing the two front screws [®]. This solution has numerous advantages:

- Reduced overall dimensions.
- Free composition of multiple elements, without the need for brackets, stay bolts or yoke.
- The threads for the fittings are metallic, allowing high tightening torques, also for tapered threads.

 Maximum flexibility: a unit can be transformed at any time by adding an element or replacing a port with another one, e.g. 1/4" instead of 1/8".

- The air intake port can be the same or different from the outlet port, as desired. Standard Syntesi⊕ ports are: 1/8", 1/4", 3/8" for size 1; 3/8", 1/2", 3/4", 1" for size 2.

It may be necessary to use a vice to insert the bushes into size 2.

The nipples have different functions:

- Nipple © joins two elements of the same size together.
- Size adaptor © can be used to connect an element in the Syntesi® 2 series with one in the Syntesi® 1 series.
- The 90° adaptor (E) can be used to connect two 90° angled elements. For example, it can help directing the regulator knob or the control knob of a sectioning valve towards the user.
- The two-way air intake @ is a simple and cost-effective system which, besides connecting two elements together, has 2 opposing threaded air intakes.

- The adaptor for Regtronic ® can be used to fix the Regtronic 1/4" proportional valve to a Syntesi® size 1 element.

Additional ports ©. On the front and back of ALL Syntesi® elements there is a port (1/8" for size 1, 1/4" for size 2) that can be used for pressure gauges ©, pressure switches @ or, given the high flow rate, as additional air take-off @. These ports are downstream of the element, so, for example, a regulator port can supply air at a set pressure or a filter port can supply filtered air (not valid for activated carbon filter and depurator).

Wall fixing. Only two through screws @ are needed. No bulky brackets or additional flanges are required. The bracket @ can be used to separate

the unit from the fixing wall, e.g. to mount a fitting to the rear port.

Fixing on a DIN EN50022 bar. Can be done using the bracket kit ①.

Regulator fixing bracket ②. Regulators and filter-regulators can also be fixed using a steel bracket ③ that embraces the bell.

Padlockable knob ®. The knobs of regulators, filter-regulator and sectioning valves can all be padlocked. The steel plate is included in the supply. You can insert up to two 3 mm diameter padlocks ® on size 1 and three padlocks on size 2. As an alternative, the sectioning valve can have a steel plate suitable for a single 6 mm diameter padlock.

Safety valve (S). The unit can incorporate a series 70 SAFE AIR® safety valve.

Flowmeter series FLUX 1-2 (1). The unit can incorporate a series FLUX 1 or FLUX 2 flow meter.

Page 9 of 11

UNITS

Syntesi® KEY TO CODES

SUNTESI: KEY TO CODES

KEY TO CODES S	SINGLE ELEMEN	NT			
56	1	1	F	10	1
SYNTESI	SIZE	THREADED INPUT CONNECTION	ELEMENT	TYPE	THREADED OUTPUT CONNECTION
56 Syntesi 5X Syntesi anti-corrosion	1 Size 1 2 Size 2	O Without bushing 1 1/8" port 2 1/4" port 3 3/8" port O Without bushing 3 3/8" port 4 1/2" port 5 3/4" port 6 1" port	F Filter D Depurator C Active corbon filter R Pressure regulator B Filter-regulator L Lubricator ● V Shut off valve A A Progressive starter A S Pressure switches P Air take-off	Varies from element to element	O Without bushing 1 1/8" port 2 1/4" port 3 3/8" port O Without bushing 3 3/8" port 4 1/2" port 5 3/4" port 6 1" port

- The anti-corrosion version of this element is only available with manual actuation.
 Not available in the anti-corrosion version.

KEY TO CODES UNIT CO	MPOSED OF TWO	OR THREE ELEME	ENTS					
56 1	1	٧	10	В	24	L	10	1
SYNTESI SIZE	THREADED INPUT CONNECTION	ELEMENT 1	TYPE	ELEMENT 2	TYPE	ELEMENT 3	TYPE	THREADED OUTPUT CONNECTION
56 Syntesi Syntesi onti-corrosion 2 Size	2 1/4" port 3 3/8" port	F Filter D Depurator C Active carbon filter R Pressure regulator B Filter regulator L lubricator ● V Shut off valve A Progressive starter A S Pressure switches P Air Take-off	Varies from element to element	F Filter D Depurator C Active carbon filter R Pressure regulator B Filter regulator L lubricator ● V Shut off valve A Progressive starter A S Pressure switches P Air Take-off	Varies from element to element	F Filter D Depurator C Active carbon filter R Pressure regulator B Filter- regulator L lubricator ● V Shut off valve A A Progressive starter A S Pressure switches P Air Take-of	Varies from element to element	1 1/8" port 2 1/4" port 3 3/8" port 3 3/8" port 4 1/2" port 5 3/4" port 6 1" port

- The anti-corrosion version of this element is only available with manual actuation.
 Not available in the anti-corrosion version.

Accessories

Art. No.	Type No.
145615	9210106
145616	9210107
145623	9210156
145624	9210157
145655	9210232
145656	9210233
145659	9200717X
145660	9200718X
145474	9900101
145477	9210005
144696	9210010
145503	9210019
145504	9210006
145506	9210050
145508	9210031
145509	9062401
	145615 145616 145623 145624 145655 145656 145659 145660 145474 145477 144696 145503 145504 145506 145508

Spareparts

	Art. No.	Type No.	
Bowl, size 2, RMSA semi-automated	145614	9210105	
Bowl for lubricator, size 2, PA12	145618	9210115	
Filter element, size 2, 5 µm	145622	9210155	
Lubricator dome (drip cap), s2, w. oil filling cap	145630	9210185	
Oil filling cap, size 2	145632	9210186	
Spring, size 2, 0 - 4 bar	145638	9210196	
Regulator cap (bell), size 2, 0 - 4 bar	145646	9210221	
Valve poppet for filter regulator, size 2, 5 μm	145654	9210231	
Threaded port bushing, size 2, G 3/8	144691	9210011	